Farads (F) is the standard unit of capacitance in the International System of Units (SI). One farad is a massive unit of capacitance, representing the ability of a capacitor to store one coulomb of electrical charge with a potential difference of one volt between its plates.
Given the enormous range over which capacitor values can vary, several different prefixes may be used. This prevents confusion with large numbers of zeros attached to the values of the various capacitors.
In most practical applications, capacitances are expressed in smaller units such as microfarads (μF), nanofarads (nF), or picofarads (pF), where 1 farad is equivalent to 1,000,000 microfarads, 1,000,000,000 nanofarads, or 1,000,000,000,000 picofarads, respectively.
I have written about capacitors on this site before, along with Resistors; I will update both those pages.
Main prefixes used.
| Prefix | Symbol | Value | 10-X |
|---|---|---|---|
| F | 1 | ||
| millifarard | mF | 0.0001 | 10-3 |
| microfarard | μF | 0.000001 | 10-6 |
| nanofarard | nF | 0.000000001 | 10-9 |
| picofarard | pF | 0.000000000001 | 10-12 |
Common Ceramic Capacitor Values
At work, I have three different Ceramic capacitor kits: Two LV kits, one is a 15-value kit, the other is a 10-value kit, and a high-voltage kit.
The following table lists the Capacitor values, in pF, nF and μF. Also on this table is the three-number code printed on the side of the capacitor, allowing you to identify the capacity.
| Pico Farad pF | Nano Farads nF | Micro Farads μF | Code | 15 Value kit | 10 Value kit | High Voltage kit 1, 2, or 3 kV |
|---|---|---|---|---|---|---|
| 10 | 0.01 | 100 | X | |||
| 20 | 0.02 | 200 | X | |||
| 30 | 0.03 | 300 | X | |||
| 47 | 0.047 | 470 | X | |||
| 56 | 0.056 | 560 | X | |||
| 68 | 0.068 | 680 | X | |||
| 100 | 0.1 | 101 | X | X | ||
| 150 | 0.15 | 151 | X | |||
| 220 | 0.22 | 221 | X | X | ||
| 330 | 0.33 | 331 | X | X | ||
| 470 | 0.47 | 471 | X | |||
| 560 | 0.56 | 561 | X | |||
| 680 | 0.68 | 681 | X | X | ||
| 820 | 0.82 | 821 | X | |||
| 1000 | 1 | 102 | X | X | ||
| 1500 | 1.5 | 152 | X | |||
| 2200 | 2.2 | 222 | X | |||
| 3300 | 3.3 | 332 | X | |||
| 4700 | 4.7 | 472 | X | X | ||
| 6800 | 6.8 | 682 | X | |||
| 10000 | 10 | 103 | X | X | ||
| 47000 | 47 | 473 | X | |||
| 100000 | 100 | 0.1 | 104 | X | X | |
| 150 | 0.15 | 154 | X | |||
| 220 | 0.22 | 224 | X | |||
| 330 | 0.33 | 334 | X | |||
| 470 | 0.47 | 474 | X | |||
| 680 | 0.68 | 684 | X | |||
| 1000 | 1 | 105 | X | |||
| 2200 | 2.2 | 225 | X | |||
| 4700 | 4.7 | 475 | X | |||
| 10000 | 10 | 106 | X |
Common Electrolytic Capacitor Kit
Generally, for larger values of capacitors, the values will not be available in ceramic capacitors. Once you get above about 100 nF, Electrolytic capacitors (through-hole kits and SMD kits) become more common to use.
| Nano Farads nF | Micro Farads μF | Millifarard mF | Through Hole Size | SMD Size | Voltage Rating | Through Hole Kit | SMD Kit |
|---|---|---|---|---|---|---|---|
| 100 | 0.1 | 4 x 7 | 50 | X | |||
| 220 | 0.22 | 5 x 11 | 50 | X | |||
| 470 | 0.47 | 5 x 11 | 50 | X | |||
| 1000 | 1 | 5 x 11 | 4 x 5.4 | 50 | X | X | |
| 2200 | 2.2 | 4 x 7 | 50 | X | |||
| 3300 | 3.3 | 4 x 7 | 50 | X | |||
| 4700 | 4.7 | 4 x 7 | 4 x 5.4 | 50 | X | X | |
| 10000 | 10 | 4 x 7 | 25 | X | |||
| 5 x 11 | 5 x 5.4 | 50 | X | X | |||
| 22 | 4 x 7 | 16 | X | ||||
| 4 x 7 | 5 x 5.4 | 25 | X | X | |||
| 33 | 4 x 7 | 16 | X | ||||
| 47 | 4 x 7 | 10 | X | ||||
| 5 x 11 | 25 | X | |||||
| 6.3 x 5.4 | 35 | X | |||||
| 6 x 11 | 50 | X | |||||
| 100 | 0.1 | 5 x 11 | 16 | X | |||
| 5 x 11 | 6.3 x 7.7 | 25 | X | X | |||
| 220 | 0.22 | 5 x 11 | 10 | X | |||
| 6.3 x 7.7 | 16 | X | |||||
| 6 x 11 | 25 | X | |||||
| 330 | 0.33 | 8 x 12 | 8 x 10.5 | 25 | X | X | |
| 470 | 0.47 | 6 x 11 | 10 | X | |||
| 8 x 12 | 8 x 10.5 | 16 | X | X | |||
| 680 | 0.68 | 8 x 12 | 16 | X | |||
| 1000 | 1 | 10 x 16 | 10 x 10.5 | 16 | X | X |
